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The asymmetric synthesis of an acyclic anti-b-alkoxy ether was achieved by the Ireland–Claisen rear-
rangement of Z-3-alkoxy-2-propenyl glycolate ester, prepared from Garner’s aldehyde, a glycolic acid
derivative, and ethynyl N,N-diisopropylcarbamate. The resulting acyclic ether was facilely converted to
seven- and eight-membered cyclic ethers via processes involving ring-closing olefin metatheses.
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Natural medium ring ether compounds, which are often bioac-
tive, have attracted synthetic interest due to their particular
structural features, such as medium-sized ring systems or stereo-
chemical complexity around the ether linkage.1 While a large
number of synthetic methods have been developed by many re-
search groups,2 ring-closing olefin metathesis (RCM)3 based ap-
proaches have been extensively explored,4,5 because RCM realizes
efficient ring-closure under mild catalytic conditions and tolerates
a wide variety of functional groups in its substrates. However, the
construction of the stereochemically complex ether linkage in the
diene substrates of RCM for medium ring ethers is still difficult.6

Therefore, approaches toward these systems have focused on the
establishment of an efficient method for the stereoselective syn-
thesis of acyclic ethers.

In our recent studies on the construction of medium ring ethers
using RCM,7 we found that the Ireland–Claisen rearrangement of
an acyclic Z-3-alkoxy-2-propenyl glycolate ester stereoselectively
produced an acyclic anti-b-alkoxy ether, corresponding to an ether
moiety of a natural trans-fused polycyclic ether.7a Here, we de-
scribe the development of an improved variant of this rearrange-
ment, which accomplishes the asymmetric synthesis of an acyclic
anti-b-alkoxy ether from easily available starting materials for effi-
cient medium ring ether synthesis.

The goal of this project was to devise a facile method to con-
struct a terminal medium ring in a trans-fused polycyclic ether sys-
tem (1) (Scheme 1). Toward this goal, a synthetic route was
11 1210 13: n=1, R =CO2Me
14: n=0, R3=CH2OBn

Scheme 1.
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designed that relied on RCM for the ring closure of the terminal
medium ring of 1 and chirality-transferring Ireland–Claisen rear-
rangement for setting up the anti-b-alkoxy ether substrate (2) ste-
reoselectively. Based on our previous study that showed exclusive
anti selectivity in the rearrangement of a simple Z-3-alkoxy-2-pro-
penyl glycolate ester,7a 1-substituted Z-3-alkoxy-2-propenyl ester
4 was employed as a precursor of 2. We also expected that the chi-
rality at C1 of the propenyl group of 4 would be efficiently trans-
ferred to the newly formed stereocenters of 2 via putative
transition state 3.8 Ester 4 would be prepared from polycyclic ether
5, having a glycolic acid moiety, and chiral Z-3-alkoxy-2-propenol
6. We chose to synthesize 6 by stereoselective addition of pro-
tected ynol 9 to aldehyde 8 with the assistance of the R2 group
as a chiral auxiliary, followed by Lindlar hydrogenation. Thus, the
proposed synthetic route was demonstrated by the model synthe-
sis of oxane-fused medium ring ethers 13 and 14 from oxane-con-
nected glycolic acid 109 corresponding to 5, Garner’s aldehyde
(11),10 reported to be efficient for stereoselective addition reac-
tions,11 and ethynyl N,N-diisopropylcarbamate (12),12 a stable ynol
derivative.

First, chiral Z-3-carbamoyloxy-2-propenol 17, corresponding to
6, was selectively synthesized (Scheme 2). The addition reaction of
11 with the acetylide derived from 12 in the presence of LiBr13 pro-
duced alcohol 1514 (70%) with almost complete diastereoselectivi-
ty. The configuration of the newly generated stereocenter of 15
was determined by the presence of an NOE between Ha and Hb
of 16, derived from 15 by hydrogenation and subsequent basic
treatment. Lindlar hydrogenation of 15, followed by simple filtra-
tion, quantitatively gave 1714 in an almost pure form.

The chirality-transferring Ireland–Claisen rearrangement of es-
ter 18,14 prepared by the condensation of 10 and 17 with EDCI�HCl
(74%), was found to proceed successfully under the following con-
ditions. After ester 18 was deprotonated with KHMDS (5 equiv)15

in THF at –78 �C for 30 min, the resulting enolate was treated suc-
cessively with TMSCl (5 equiv) and diethyl malonate (5 equiv).
Subsequent warming of the reaction mixture to ambient tempera-
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Scheme 2. Reagents and conditions: (a) i-Pr2NH, MeLi (including LiBr), 12, THF,
–78 �C, 30 min, then 11, –78 �C, 12 h, 70%; (b) H2, 10% Pd/C (cat.), EtOH, 24 �C, 1.5 h;
(c) NaH, DMF, 24 �C, 12.5 h, 59% from 15; (d) H2, Lindlar’s cat., PhH, 25 �C, 7.5 h,
�100%; (e) 10, EDCI�HCl, DMAP, CH2Cl2, 1 h, 74% from 17; (f) KHMDS (5 equiv),
–78 �C, 30 min, then TMSCl (5 equiv), 30 min, then diethyl malonate (5 equiv),
30 min, then 24 �C, 1 h; (g) TMSCHN2, MeOH, 24 �C, 10 min, 70% (19+20;
19:20 = 3.4:1) from 18.
ture produced rearrangement products, which were methylated
with TMSCHN2

16 to afford a separable mixture of anti- and syn-
ethers having an E-olefin (19 and 20, respectively) in a combined
yield of 70% with 3.4:1 anti-selectivity. Diethyl malonate was
added as a scavenger of the excess base to avoid elimination of
the carbamoyloxy group from the rearrangement products. The
moderate anti-selectivity was attributed to the moderate Z-prefer-
ence in the ketene silyl acetal formation step from 18 under either
kinetic or thermodynamic conditions. Since neither the extended
time (1 h) for the deprotonation nor the addition of HMPA as a
co-solvent affected the diastereoselectivity, the equilibrium ther-
modynamic ratio of Z/E ketene silyl acetals in this reaction is sug-
gested to be 3.4:1. On the other hand, the kinetic formation of the
ketene silyl acetal of 18 by treatment with TMSCl prior to deproto-
nation with KHMDS showed a somewhat decreased anti-selectivity
(2.2:1). Thus, thanks to the thermodynamic equilibration, anti-
ether 19 was obtained in 55% isolated yield and was available for
the medium ring formation.

Next, oxane-fused eight-membered ring ethers 13 and 23 were
synthesized from 19 and 20, respectively (Scheme 3). The conver-
sion of the 3-Boc-2,2-dimethyl-1,3-oxazoline-4-yl group of 19 to a
hydroxymethyl group was first performed. A three-step process,
including acidic methanolysis of 19, oxidative cleavage of the
resulting 1,2-aminoalcohol, and Luche reduction17 produced 21
in good yield (85% from 19). Allyl alcohol 21 was transformed to
terminal alkene 22 (89%) by a modified Movassaghi’s procedure,18

in which an excess amount of 1-hexene was used as a scavenger of
free diimide generated during the reaction. Treatment of 22 with a
catalytic amount of second-generation Grubbs’ catalyst19 in reflux-
ing CH2Cl2 promoted RCM to furnish 1320 in high yield (80%). The
same five-step process from 20 also provided bicyclic ether 2320

facilely. Thus, a process for the construction of an eight-membered
ether ring in five steps after the Ireland–Claisen rearrangement
step was established. The N,N-diisopropylcarbamoyl (Cb) group
of 13 could also be removed by stepwise treatment with LiAlH4

and MeLi to produce 24 in an acceptable yield (57%).
The stereochemistries of 13 and 23 were determined by NMR

analysis, in which an NOE correlation H4/H10 and a large JH9–H10

(9.9 Hz) were detected in 13, and NOE correlations H5/H10 and
H9/H10 as well as a small JH9–H10 (�0 Hz) were observed in 23,
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Scheme 3. Reagents and conditions: (a) 1 M HCl in MeOH, 23 �C, 3 h; (b) NaIO4, 1,4-
dioxane–pH 7 buffer (1:1), 25 �C, 1 h; (c) NaBH4, CeCl3�7H2O, MeOH, �78 �C, 10 min,
85% from 19. (d) IPNBSH, Ph3P, DEAD, THF–1-hexene (5:1), 0 �C?25 �C, 2 h, then
CF3CH2OH–H2O (1:1), 25 �C, 9 h, 89%; (e) (H2IMes)(PCy3)Cl2RuCHPh (cat.), CH2Cl2,
reflux, 3.5 h, 80%; (f) LiAlH4, THF, 0 �C?23 �C, 1.5 h; (g) MeLi, THF, 0 �C, 1.5 h, 57%
from 13; (h) TFA–CH2Cl2 (1:2), 25 �C, 10 min; (i) NaIO4, 1,4-dioxane–pH 7 buffer
(1:1), 25 �C, 2 h; (j) NaBH4, CeCl3�7H2O, MeOH, –78 �C, 10 min, 44% from 20; (k)
IPNBSH, Ph3P, DEAD, THF–1-hexene (5:1), 0 �C?25 �C, 2 h, then CF3CH2OH–H2O
(1:1), 25 �C, 9 h, 45%; (l) (H2IMes)(PCy3)Cl2RuCHPh (cat.), CH2Cl2, reflux, 3.5 h, 92%.
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thereby confirming the configurations of rearrangement products
19 and 20.

Construction of an oxane-fused seven-membered ring ether
from 19 was also carried out (Scheme 4). The immediate treatment
of 19 with second-generation Grubbs’ catalyst19 did not afford
RCM product 25 but gave only recovered starting material. This
suggested that steric congestion of the CbO- and the 3-Boc-2,2-di-
methyl-1,3-oxazoline-4-yl groups would inhibit the access of any
active ruthenium species to the internal olefin. Therefore, a step-
wise route from 19 including the removal of the oxazolinyl group
and a relay-RCM process,21 an effective method for the RCM of ste-
rically hindered substrates, was undertaken for the assembly of se-
ven-membered ring ether 14. After methyl ester 19 was converted
to benzyl ether 26 by reduction and subsequent benzylation (87%),
the 3-Boc-2,2-dimethyl-1,3-oxazoline-4-yl group of 26 was trans-
formed to an allyl alcohol group by the same three-step process
as described above (65%). The resulting alcohol 27 was allylated
under Williamson conditions to provide 28 (87%), which was cy-
clized with second-generation Grubbs’ catalyst19 to furnish 1420

in high yield (96%). Thus, a simple procedure was set up for the se-
ven-membered ring ether synthesis subsequent to the Ireland–Cla-
isen step.

In conclusion, the asymmetric synthesis of an acyclic anti-b-alk-
oxy ether was achieved by the Ireland–Claisen rearrangement of
Z-3-alkoxy-2-propenyl glycolate ester, prepared from Garner’s
aldehyde, a glycolic acid derivative, and ethynyl N,N-diisopropylc-
arbamate. The resulting acyclic ether was facilely converted to
seven- and eight-membered cyclic ethers via processes involving
ring-closing olefin metatheses. Further improvement of the diaste-
reoselectivity of the rearrangement step and applications to the
synthesis of natural medium ring ethers are now in progress.
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J = 6.5, 10.5 Hz), 3.73 (1H, dd, J = 2.3, 10.5 Hz), 3.94 (1H, ddd, J = 2.3, 6.5, 9.5 Hz),
4.41 (1H, d, J = 12.3 Hz), 4.50 (1H, d, J = 12.3 Hz), 5.72 (1H, br td, J = 2.5,
12.8 Hz), 5.84 (1H, br td, J = 2.1, 12.8 Hz), 5.87 (1H, br qd, J = 2.4, 9.5 Hz), 7.05–
7.11 (1H, m), 7.14–7.21 (2H, m), 7.31–7.36 (2H, m); 13C NMR (100 MHz, CDCl3)
d 20.5 (CH3 � 2), 21.6 (CH3 � 2), 25.5 (CH2), 31.0 (CH2), 45.4 (CH), 46.5 (CH),
67.6 (CH2), 71.0 (CH2), 72.2 (CH2), 73.5 (CH), 80.4 (CH), 81.0 (CH), 82.7 (CH),
127.5 (CH), 127.6 (CH � 2), 128.3 (CH � 2), 130.5 (CH), 132.2 (CH), 138.4 (C),
154.2 (C); HR-EIMS calcd for C24H35NO5 [M+]: 417.2515, found: 417.2502.

21. Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A.; Wang, J.; Zhao, H. J. Am. Chem. Soc.
2004, 126, 10210.


